-
Introduction
-
Libraries
-
Numpys
-
Pandas
-
Data Frame
-
Sci-kit
-
Exploratory Data Analytics using Python (EDA)
-
Data Wrangling
-
Data Visualization
-
Matplotlib
-
Seaborn
-
Hypothesis Testing
-
Machine Learning
-
Regression
-
Simple Linear Regression
-
Logistic Regression
-
Multiple Linear Regression
-
Polynomial Regression
-
Decision Tree Regression
-
Evaluating Regression Model Parameters Classification
-
K Nearest Neighbors ( KNN )
-
Evaluating Regression Model Parameters Classification
-
K Nearest Neighbors ( KNN )
-
Naive Bayes Classifier
-
Decision Tree Algorithm
-
Random Forest Algorithm, SVM
-
Unsupervised Machine Learning –
-
Introduction To Clustering Algorithms
-
K-Means Clustering
-
Elbow Method for the optimal value of k in K-Means
-
Hierarchical Clustering
-
Libraries
-
Deep Learning and AI
Multiple Linear Regression
The lesson content is empty.